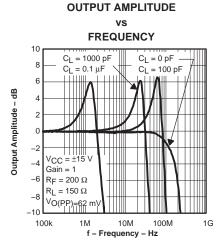

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008


- Qualified for Automotive Applications
- C-Stable Amplifier Drives Any Capacitive Load
- High Speed
 - 165 MHz Bandwidth (-3 dB); $C_L = 0 \text{ pF}$
 - 100 MHz Bandwidth (-3 dB); C_L = 100 pF
 - 35 MHz Bandwidth (-3 dB); CL = 1000 pF
 - 400 V/µs Slew Rate
- Unity Gain Stable
- High Output Drive, I_O = 100 mA (typ)
- Low Distortion
 - THD = -75 dBc (f = 1 MHz, R_L = 150 Ω)
 - THD = -89 dBc (f = 1 MHz, $R_L = 1 k\Omega$)
- Wide Range of Power Supplies - V_{CC} = ±5 V to ±15 V
- Evaluation Module Available

description/ordering information

The THS4041 is a single, high-speed voltage feedback amplifier capable of driving any capacitive load. This makes it ideal for a wide range of applications including driving video lines or buffering ADCs. The device features high 165-MHz bandwidth and 400-V/ μ s slew rate. The THS4041 is stable at all

NC - No internal connection

gains for both inverting and noninverting configurations. For video applications, the THS4041 offers excellent video performance with 0.01% differential gain error and 0.01° differential phase error. This amplifier can drive up to 100 mA into a 20- Ω load and operate off power supplies ranging from ±5 V to ±15 V.

ORDERING INFORMATION[†]

T _A	NUMBER OF CHANNELS	PACKA	GE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	1	SOIC (D)	Tape and Reel	THS4041IDRQ1	4041Q1

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

[‡]Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

CAUTION: The THS4041 provides ESD protection circuitry. However, permanent damage can still occur if this device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Insruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008 Texas Instruments Incorporated

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

functional block diagram

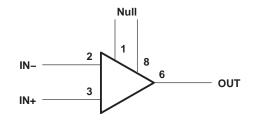


Figure 1. THS4041 – Single Channel

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC} Input voltage, V _I	
Output current, I _O	
Differential input voltage, VIO	
Maximum junction temperature, T _J (see Figure 2)	150°C
Package thermal impedance, θ_{JA} (see Note 1)	215°C/W
Operating free-air temperature, T _A : I-suffix	–40°C to 85°C
Storage temperature, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: This data was taken using the JEDEC standard Low-K test PCB. For the JEDEC proposed High-K test PCB, the θ_{JA} is 126°C/W.

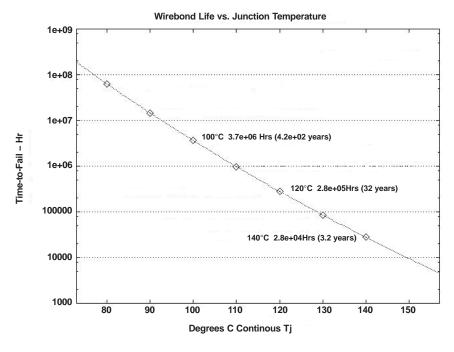


Figure 2. Estimated Wirebond Life

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

recommended operating conditions

		MIN	NOM	MAX	UNIT
	Dual supply	±4.5		±16	V
Supply voltage, V_{CC+} and V_{CC-}	Single supply	9		32	V
Operating free-air temperature, TA	I-suffix	-40		85	°C

electrical characteristics at T_A = 25°C, V_{CC} = \pm 15 V, R_L = 150 Ω (unless otherwise noted)

dynamic performance

	PARAMETER	TES	T CONDITIONS [†]		MIN TY	P MAX	UNIT	
		$V_{CC} = \pm 15 V$	$R_{f} = 200 \ \Omega$		16	5	N411-	
	Dynamic performance small-signal bandwidth	$V_{CC} = \pm 5 V$	$R_{f} = 200 \ \Omega$	Gain = 1	150)	MHz	
	(-3 dB)	$V_{CC} = \pm 15 V$	R_{f} = 1.3 k Ω		60)	N411-	
DW		$V_{CC} = \pm 5 V$	R_{f} = 1.3 k Ω	Gain = 2	60)	MHz	
BW	Denduidth fan 0.4 dD flataeaa	$V_{CC} = \pm 15 V$	$R_{f} = 200 \ \Omega$	Coin 1	4	5	N 41 1-	
	Bandwidth for 0.1 dB flatness	$V_{CC} = \pm 5 V$	$R_{f} = 200 \ \Omega$	Gain = 1	4	5	MHz	
	Full a surray have do i dila 8	V _{O(pp)} = 20 V,	$V_{CC} = \pm 15 V$		6.3	3	N411-	
	Full power bandwidth§	V _{O(pp)} = 5 V,	$V_{CC} = \pm 5 V$		20)	MHz	
0.0	0	$V_{CC} = \pm 15 V$,	20-V step,	Gain = 5	400)	Mar	
SR	Slew rate [‡]	$V_{CC} = \pm 5 V$,	5-V step,	Gain = -1	32	5	V/µs	
		$V_{CC} = \pm 15 V$,	5-V step		120)		
	Settling time to 0.1%	$V_{CC} = \pm 5 V$,	2-V step	Gain = -1	120)	ns	
t _S		$V_{CC} = \pm 15 V$,	5-V step		250)		
	Settling time to 0.01%	$V_{CC} = \pm 5 V$,	2-V step	Gain = -1	280)	ns	

[†] Full range = -40° C to 85° C for I suffix

[‡] Slew rate is measured from an output level range of 25% to 75%. § Full power bandwidth = slew rate / $2 \pi V_{O(Peak)}$.

noise/distortion performance

	PARAMETER	TEST	TEST CONDITIONS [†]			TYP	MAX	UNIT
				RL = 150 Ω		-75		
TUD	Total because of a distantian	$V_{O(pp)} = 2 V,$	$V_{CC} = \pm 15 V$	$R_L = 1 \ k\Omega$		-89		dBc
THD	Total harmonic distortion	V _{O(pp)} = 2 V, f = 1 MHz, Gain = 2		R _L = 150 Ω		-75		
	$V_{CC} = \pm 5 V$		$VCC = \pm 2$ V	$R_L = 1 \ k\Omega$		-86		
Vn	Input voltage noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V},$	f = 10 kHz			14		nV/√Hz
In	Input current noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V},$	f = 10 kHz			0.9		pA/√Hz
		Gain = 2,	NTSC,	$V_{CC} = \pm 15 V$		0.01%		
	Differential gain error	40 IRE modulation,	±100 IRE ramp	$V_{CC} = \pm 5 V$		0.01%		
	Differential phase error	Gain = 2,	NTSC,	$V_{CC} = \pm 15 V$		0.01°		
	Differential phase error 40 IRE modulation,		±100 IRE ramp	$V_{CC} = \pm 5 V$		0.02°		

[†]Full range = -40° C to 85° C for I suffix

SGLS229B – FEBRUARY 2004 – REVISED JUNE 2008

electrical characteristics at T_A = 25°C, V_{CC} = \pm 15 V, R_L = 150 Ω (unless otherwise noted) (continued)

dc performance

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS [†]			MAX	UNIT
		$V_{CC} = \pm 15 V$, $V_{O} = \pm 10 V$,	$T_A = 25^{\circ}C$	74	80		
	Open loop gain	$R_L = 1 k \Omega$		69			10
		$V_{CC} = \pm 5 V$, $V_{O} = \pm 2.5 V$,	$T_A = 25^{\circ}C$	69	76		dB
		$R_L = 250 \Omega$	$T_A = full range$	66			
	han at a ff a standto me				2.5	10	
Vos	Input offset voltage	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = full range$			13	mV
	Offset voltage drift	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = full range$		10		μV/°C
	land black some of		$T_A = 25^{\circ}C$		2.5	6	
IВ	Input bias current	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = full range$			8	μA
	logist effect example		$T_A = 25^{\circ}C$		35	250	- 1
los	Input offset current	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = full range$			400	nA
	Offset current drift	T _A = full range			0.3		nA/∘C

[†] Full range = -40° C to 85° C for I suffix

input characteristics

	PARAMETER	Т	EST CONDITIONS	•	MIN	TYP	MAX	UNIT
		$V_{CC} = \pm 15 V$			±13.8	±14.3		V
VICR	Common-mode input voltage range	$V_{CC} = \pm 5 V$			±3.8	±4.3		V
01455	2 1 1 1 1	$V_{CC} = \pm 15 V,$	$V_{ICR} = \pm 12 V$	T (H	70	90		
CMRR	Common mode rejection ratio	$V_{CC} = \pm 5 V$,	V _{ICR} = ±2.5 V	T _A = full range	80	100		dB
ri	Input resistance					1		MΩ
Ci	Input capacitance					1.5		pF

[†]Full range = -40° C to 85° C for I suffix

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

electrical characteristics at T_A = 25°C, V_{CC} = \pm 15 V, R_L = 150 Ω (unless otherwise noted) (continued)

output characteristics

	PARAMETER	TEST CO	TEST CONDITIONS [†]			MAX	UNIT
		V _{CC} = ±15 V	RL = 250 Ω	±11.5	±13		V
		$V_{CC} = \pm 5 V$	RL = 150 Ω	±3.2	±3.5		V
VO	Output voltage swing	$V_{CC} = \pm 15 V$		±13	±13.6		
		$V_{CC} = \pm 5 V$	R _L = 1 kΩ	±3.5	±3.8		V
		$V_{CC} = \pm 15 V$		80	100		
ю	Output current‡	$V_{CC} = \pm 5 V$	R _L = 20 Ω	50	65		mA
ISC	Short-circuit current [‡]	$V_{CC} = \pm 15 V$			150		mA
RO	Output resistance	Open loop			13		Ω

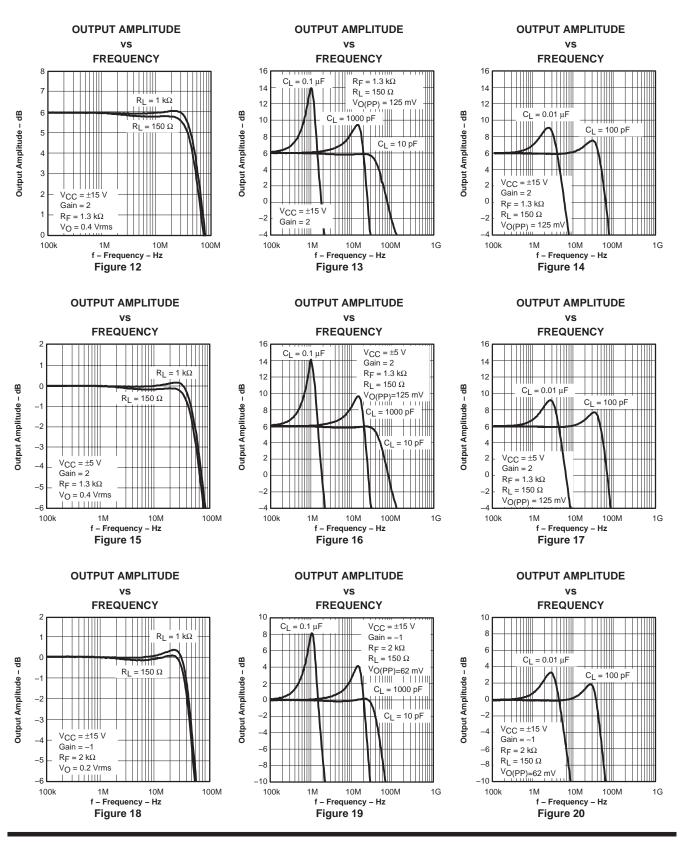
[†] Full range = -40° C to 85° C for I suffix

[‡]Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or shorted. See the *absolute maximum ratings* section of this data sheet for more information.

power supply

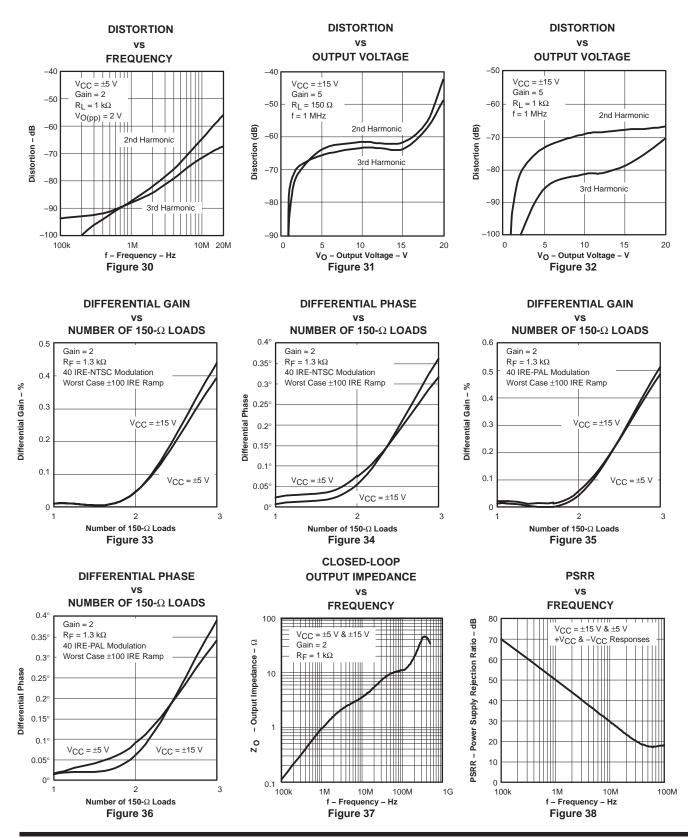
PARAMETER TEST CONDITIONS [†]		t	MIN	TYP	MAX	UNIT	
	O male and the second data and the second data and	Dual supply		±4.5		±16.5	
VCC	Supply voltage operating range	Single supply		9		33	V
			$T_A = 25^{\circ}C$		8	9.5	
		$V_{CC} = \pm 15 V$	$T_A = full range$			11	
ICC	Supply current (per amplifier)	N 15.4	$T_A = 25^{\circ}C$		7	8.5	mA
		$V_{CC} = \pm 5 V$	$T_A = full range$			10	
	B		$T_A = 25^{\circ}C$	75	84		5
PSRR	Power supply rejection ratio	$V_{CC} = \pm 5 V \text{ or } \pm 15 V$	$T_A = $ full range	70			dB

[†] Full range = -40° C to 85° C for I suffix



OPEN LOOP GAIN AND OUTPUT AMPLITUDE OUTPUT AMPLITUDE PHASE RESPONSE VS vs vs FREQUENCY FREQUENCY FREQUENCY 0.4 0 100 VCC = ±15 V and ±5 V 0.3 11111 -30 $R_L = 1 k\Omega$ 80 $R_L = 1 k\Omega$ 0 0.2 - dB 똅 뜅 Gair -60 $R_L = 150 \ \Omega$ 60 ees 0.1 -90 -90 -120 -00 -120 -00 Output Amplitude Output Amplitude Loop Gain 40 -2 -0.0 Phase -0. Open $R_L = 150 \ \Omega$ 20 V_{CC} = ±15 V -0.2 V_{CC} = ±15 V Gain = 1 Gain = 1 -150 0 $R_F = 200 \ \Omega$ -5 -0.3 R_F = 200 Ω $V_0 = 0.2$ Vrms V_O = 0.2 Vrms Ĩ 1.1.1 -0.4 -20 -180 -6 1k 1M 10M 100M 1G 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G 10k 100k f - Frequency - Hz f - Frequency - Hz f - Frequency - Hz Figure 3 Figure 4 Figure 5 **OUTPUT AMPLITUDE OUTPUT AMPLITUDE OUTPUT AMPLITUDE** vs VS vs FREQUENCY FREQUENCY FREQUENCY 10 10 2 C_L = 1000 pF $C_L = 0 pF$ 8 8 C_{L} $= 0.1 \ \mu F$ C_{L} = 100 pF $R_L = 1 k\Omega$ 6 6 C_L = 0.01 μF 0 명 뜅 Output Amplitude – dB 4 4 R_L = 150 Ω 1111 **Dutput Amplitude Dutput Amplitude** ____ 2 2 $C_{L} = 10 \, pF$ 0 0 -2 -2 -2 -3 V_{CC} = ±15 V V_{CC} = ±15 V -4 _4 Gain = 1 Gain = 1 _4 V_{CC} = ±5 V -6 R_F = 200 Ω R_F = 200 Ω -6 Gain = 1 $R_1 = 150 \Omega$ $R_I = 150 \Omega$ -5 R_F = 200 Ω -8 -8 VO(PP)=62 m VO(PP)=62 mV $V_0 = 0.2 \text{ Vrms}$ -10 -10 -6 100k 10M 100k 10M 100k 1M 10M 100M 1M 100M 1G 1M 100M 1G 1G f – Frequency – Hz f - Frequency - Hz f - Frequency - Hz Figure 7 Figure 8 Figure 6 **OUTPUT AMPLITUDE OUTPUT AMPLITUDE OUTPUT AMPLITUDE** vs vs vs FREQUENCY FREQUENCY FREQUENCY 0.4 10 10 C_L = 0 pF C_L = 1000 pF $R_L = 1 \ k\Omega$ 8 C_L = 100 pF . CL = 0.1 μF ۶ 0.3 | | | | |||| 6 0.2 Bb Output Amplitude – dB Output Amplitude – dB $C_{L} = 0.01 \ \mu F$ Output Amplitude – 0.1 2 2 CL = 10 pF 0 -0.0 -2 -2 -0.1 $R_L = 150 \ \Omega$ VCC = ±5 V $V_{CC} = \pm 5 V$ -4 V_{CC} = ±5 V Gain = 1 Gain = 1 -0.2-6 -6 $R_F = 200 \ \Omega$ $R_F = 200 \Omega$ Gain = 1 . R_L = 150 Ω RL = 150 Ω -0.3 $R_F = 200 \Omega$ -8 -8 VO(PP)=62 mV VO(PP)=62 mV $V_0 = 0.2$ Vrms -0.4 -10 -10 100k 100M 100k 1M 10M 1G 10M 100M 1G 100k 1M 10M 100M 1G 1M f – Frequency – Hz f - Frequency - Hz f - Frequency - Hz Figure 9 Figure 10 Figure 11

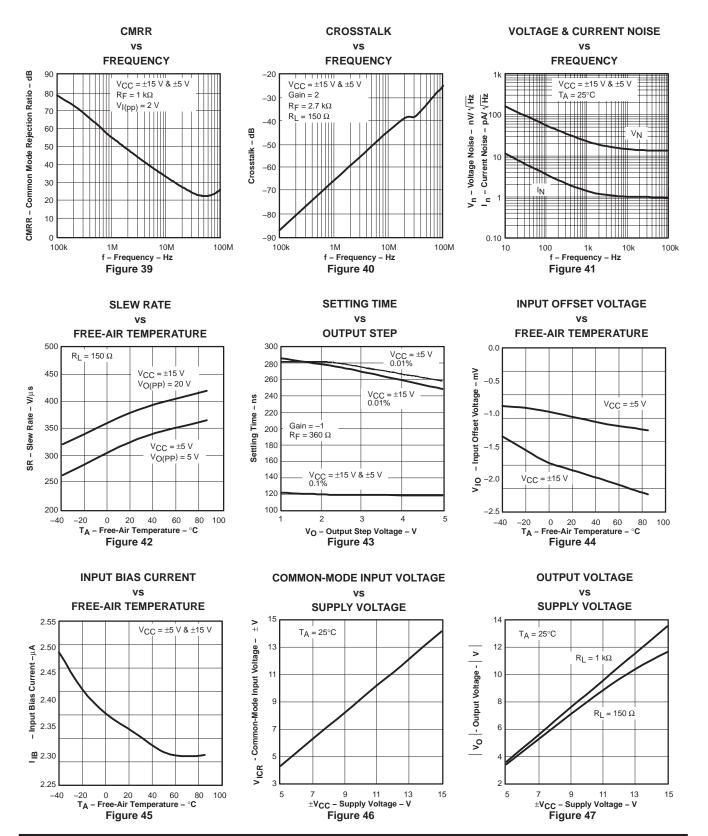
TYPICAL CHARACTERISTICS


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

OUTPUT AMPLITUDE OUTPUT AMPLITUDE OUTPUT AMPLITUDE vs vs vs FREQUENCY FREQUENCY FREQUENCY 2 10 10 V_{CC} = ±5 V $C_L = 0.1 \ \mu F$ 8 8 Gain = -1 1 R_L 1 kΩ $R_F = 2 k\Omega$ 6 6 CL = 0.01 μF . R_I = 150 Ω - dB 0 Output Amplitude – dB Output Amplitude – dB 4 TTT VO(PP)=62 mV $C_L = 100 \text{ pF}$ = 150 Ω Rı Output Amplitude -1 ĩ ình 2 2 C_L = 1000 pF -2 0 ++++ 0 -2 -2 $C_{I} = 10 \, \text{pF}$ -3 $V_{CC} = \pm 5 V$ -4 -4 VCC = ±5 V -4 Gain = -1Gain = -1 -6 -6 $R_F = 2 k\Omega$ $R_F = 2 k\Omega$ $R_L = 150 \Omega$ -5 -8 -8 $V_0 = 0.2$ Vrms VO(PP)=62 mV . -10 -10 -6 100k 1M 10M 100M 100k 1M 10M 100M 1G 100k 1M 10M 100M 1G f - Frequency - Hz f - Frequency - Hz f - Frequency - Hz Figure 21 Figure 22 Figure 23 **OUTPUT OVERSHOOT OUTPUT OVERSHOOT** TOTAL HARMONIC DISTORTION vs vs vs CAPACITIVE LOAD CAPACITIVE LOAD FREQUENCY 60 50 -40 V_{CC} = ±15 V & ±5 V VCC = ±15 V & ±5 V $V_{CC} = \pm 15 V$ Gain = 2 뗭 Gain = 1 Gain = -1 50 1 V Step FHD – Total Harmonic Distortion – 1 V Step -50 40 V_{O(pp)} = 2 V R_F = 200 Ω $R_F = 2 k\Omega$ 11111 Output Overshoot – % Output Overshoot – % R_L = 150 Ω R_L = 150 Ω 40 -60 30 $R_L = 150 \ \Omega$ 30 -70 20 20 -80 5 V Step $R_L = 1 k\Omega$ 10 5 V Ster 10 -90 11111 0 0 -100 10 100 1k 10k 10 100 1k 10k 1 1 100k 1M 10M 20M Capacitive Load - pF Capacitive Load - pF f - Frequency - Hz Figure 24 Figure 25 Figure 26 DISTORTION DISTORTION DISTORTION vs vs vs FREQUENCY FREQUENCY FREQUENCY -40 -40 -40 V_{CC} = ±15 V V_{CC} = ±15 V $V_{CC} = \pm 5 V$ Gain = 2 Gain = 2 Gain = 2 -50-50-50 $R_L = 150 \ \Omega$ $R_L = 1 \ k\Omega$ $R_L = 150 \ \Omega$ V_{O(pp)} = 2 V V_{O(pp)} = 2 V V_{O(pp)} = 2 V L L -60 -60 -60 - dB - dB Distortion – dB 2nd Harmonic 2nd Harmonic 2nd Harmonic Distortion Distortion -70 -70 -70 -80 -80 -80 3rd Harmonic 3rd Harr nonic 3rd Harr -90-90-90-100 -100 -100 100k 20M 100k 1M 10M 20M 100k 10M 20M 1M 10M 1M f - Frequency - Hz f – Frequency – Hz f - Frequency - Hz Figure 27 Figure 28 Figure 29

TYPICAL CHARACTERISTICS

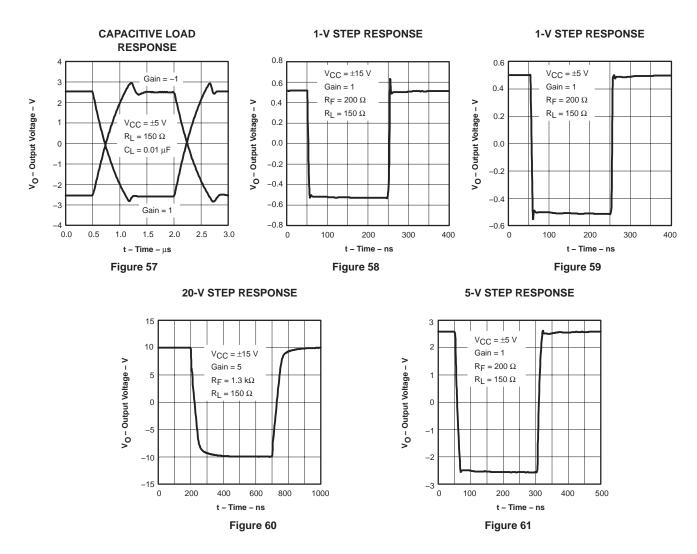


TYPICAL CHARACTERISTICS

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

TYPICAL CHARACTERISTICS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


OUTPUT VOLTAGE SUPPLY CURRENT **1-V FALLING EDGE** vs vs RESPONSE FREE-AIR TEMPERATURE SUPPLY VOLTAGE 15 10 $V_{CC} = \pm 15 V$ $C_L = 0.01 \ \mu F$ Gain = 1 R_F = 200 Ω 13 R_L = 150 Ω V_O - Output Voltage - V (0.5 V / Div) V_O - Output Voltage - V 9 $\begin{array}{c} V_{CC} = \pm 15 \text{ V} \\ \mathsf{R}_{L} = 250 \text{ }\Omega \end{array}$ $V_{CC} = \pm 15 V$ $R_L = 1 k\Omega$ CC - Supply Current - mA T_A = 85°C 11 8 C_L = 1000 pF g T_A = 25°C M 7 7 CL = 100 pF $V_{CC} = \pm 5 V R_L = 1 k\Omega$ $T_A = -40^{\circ}C$ 5 C_L = 10 pF 6 3 $\frac{V_{CC} = \pm 15 \text{ V}}{R_{L} = 150 \Omega}$ 5 0 50 100 150 200 250 300 1 -20 0 20 40 60 80 T_A – Free-Air Temperature – °C -40 -20 100 5 15 9 11 13 t - Time - ns ± V_{CC} – Supply Voltage – V Figure 48 Figure 49 Figure 50 **1-V FALLING EDGE 5-V FALLING EDGE** 5-V FALLING EDGE RESPONSE RESPONSE RESPONSE $V_{CC} = \pm 5 V$ V_{CC} = ±15 V $V_{CC} = \pm 5 V$ $C_L = 0.01 \ \mu F$ Gain = 1 Gain = 1 Gain = 1 $R_F = 200 \ \Omega$ R_F = 200 Ω V_O - Output Voltage - V (1 V/Div) $R_F = 200 \Omega$ V_O – Output Voltage – V V_O - Output Voltage - V (0.5 V / Div) $R_L = 150 \ \Omega$ RL = 150 Ω RL = 150 Ω (1 V/Div) C_L = 1000 pF C_L = 1000 pF C_L = 1000 pF łA C_L = 100 pF C_L = 100 pF $C_L = 100 \text{ pF}$ C_L = 10 pF C_L = 10 pF $C_{L} = 10 \, pF$ 100 150 200 50 50 0 50 250 300 350 0 100 150 200 250 0 100 150 200 250 t - Time - ns t - Time - ns t - Time - ns Figure 51 Figure 52 Figure 53 5-V AND 1-V STEP 5-V AND 1-V STEP **CAPACITIVE LOAD** RESPONSE RESPONSE RESPONSE 4 4 5-V Step 5-V Step Gain = -13 3 3 V_O – Output Voltage – V 2 2 V_O – Output Voltage – V 2 V_O – Output Voltage – V 1 1-V Step 1 1-V Step 1 VCC = ±15 V R_L = 150 Ω 0 0 0 $C_{L} = 0.01 \ \mu F$ $V_{CC} = \pm 15 V$ $V_{CC} = \pm 5 V$ -1 -1 -1 Gain = -1Gain = -1 $R_F = 2 k\Omega$ $R_F = 2 k\Omega$ -2 -2 -2 $R_L = 150 \ \Omega$ $R_L = 150 \ \Omega$ -3 -3 -3 $C_{L} = 1000 \text{ pF}$ $C_{L} = 1000 \text{ pF}$ Gain = 1 _4 _4 -4 0 100 200 400 0 100 200 300 400 500 . 0.0 0.5 1.5 2.0 2.5 3.0 300 1.0 t - Time - ns t - Time - ns t – Time – μs Figure 54 Figure 55 Figure 56

TYPICAL CHARACTERISTICS

VET TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

theory of operation

The THS404x is a high-speed, operational amplifier configured in a voltage feedback architecture. It is built using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing f_{TS} of several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 62.

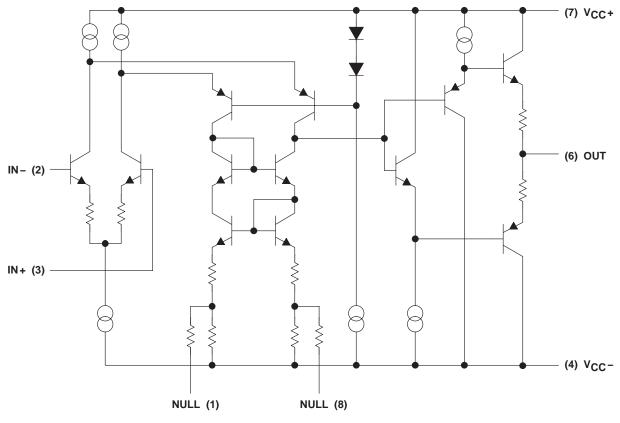


Figure 62. THS4041 Simplified Schematic

noise calculations and noise figure

Noise can cause errors on small signals. This is especially true when amplifying small signals, where signal-to-noise ration (SNR) is important. The noise model for the THS404x is shown in Figure 63. This model includes all of the noise sources as follows:

- $e_n = \text{Amplifier internal voltage noise } (nV/\sqrt{Hz})$
- IN+ = Noninverting current noise (pA/ \sqrt{Hz})
- IN- = Inverting current noise (pA/ \sqrt{Hz})
- e_{Rx} = Thermal voltage noise associated with each resistor (e_{Rx} = 4 kTR_x)

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

APPLICATION INFORMATION

noise calculations and noise figure (continued)



Figure 63. Noise Model

The total equivalent input noise density (eni) is calculated by using the following equation:

$$\mathbf{e}_{ni} = \sqrt{\left(\mathbf{e}_{n}\right)^{2} + \left(\mathbf{IN} + \times \mathbf{R}_{S}\right)^{2} + \left(\mathbf{IN} - \times \left(\mathbf{R}_{F} \parallel \mathbf{R}_{G}\right)\right)^{2} + 4 \text{ kTR}_{s} + 4 \text{ kT}\left(\mathbf{R}_{F} \parallel \mathbf{R}_{G}\right)^{2}}$$

Where:

 $k = Boltzmann's \ constant = 1.380658 \times 10^{-23} \\ T = Temperature in \ degrees \ Kelvin \ (273 + ^{\circ}C) \\ R_F \ || \ R_G = Parallel \ resistance \ of \ R_F \ and \ R_G$

To get the equivalent output noise of the amplifier, just multiply the equivalent input noise density (e_{ni}) by the overall amplifier gain (A_V) .

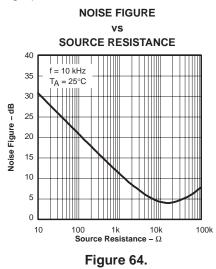
$$e_{no} = e_{ni} A_V = e_{ni} \left(1 + \frac{R_F}{R_G} \right)$$
 (noninverting case)

As the previous equations show, to keep noise at a minimum, small value resistors should be used. As the closed-loop gain is increased (by reducing R_G), the input noise is reduced considerably because of the parallel resistance term. This leads to the general conclusion that the most dominant noise sources are the source resistor (R_S) and the internal amplifier noise voltage (e_n). Because noise is summed in a root-mean-squares method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This can greatly simplify the formula and make noise calculations much easier to calculate.

For more information on noise analysis, see the *Noise Analysis* section in the *Operational Amplifier Circuits Applications Report* (literature number SLVA043).

APPLICATION INFORMATION

noise calculations and noise figure (continued)


This brings up another noise measurement usually preferred in RF applications, the noise figure (NF). The noise figure is a measure of noise degradation caused by the amplifier. The value of the source resistance must be defined and is typically 50 Ω in RF applications.

$$NF = 10log\left[\frac{e_{ni}^{2}}{\left(e_{Rs}\right)^{2}}\right]$$

Because the dominant noise components are generally the source resistance and the internal amplifier noise voltage, we can approximate noise figure as:

$$NF = 10log \left[1 + \frac{\left(\left(e_n \right)^2 + \left(IN + \times R_S \right)^2 \right)}{4 \text{ kTR}_S} \right]$$

Figure 64 shows the noise figure graph for the THS404x.

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

APPLICATION INFORMATION

driving a capacitive load

Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS404x has been internally compensated to maximize its bandwidth and slew rate performance. Typically when the amplifier is compensated in this manner, capacitive loading directly on the output will decrease the device's phase margin, leading to high frequency ringing or oscillations. However, the THS404x has added internal circuitry that senses a capacitive load and adds extra compensation to the internal dominant pole. As the capacitive load increases, the amplifier remains stable. But, it is not uncommon to see a small amount of peaking in the frequency response. There are typically two ways to compensate for this. The first is to simply increase the gain of the amplifier. This helps by increasing the phase margin to keep peaking minimized. The second is to place an isolation resistor in series with the output of the amplifier, as shown in Figure 65. A minimum value of 20Ω should work well for most applications. For example, in 75- Ω transmission systems, setting the series resistor value to 75 Ω both isolates any capacitance loading and provides the proper line impedance matching at the source end. For more information about driving capacitive loads, see the *Output Resistance and Capacitance* section of the *Parasitic Capacitance in Op Amp Circuits Application Report* (literature number SLOA013).

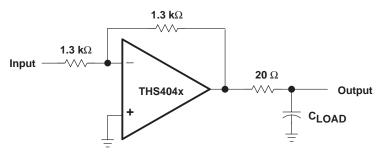


Figure 65. Driving a Capacitive Load for Extra Stability

offset nulling

The THS404x has low input offset voltage for a high-speed amplifier. However, if additional correction is required, an offset nulling function has been provided on the THS4041. The input offset can be adjusted by placing a potentiometer between terminals 1 and 8 of the device and tying the wiper to the negative supply. This is shown in Figure 66.

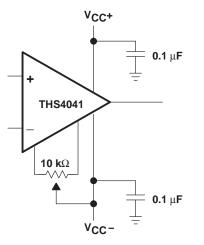


Figure 66. Offset Nulling Schematic

APPLICATION INFORMATION

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

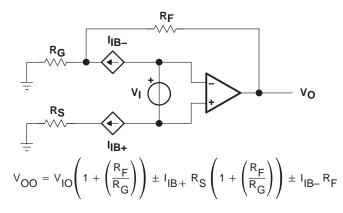


Figure 67. Output Offset Voltage Model

optimizing unity gain response

Internal frequency compensation of the THS404x was selected to provide very wideband performance yet still maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated in this manner there is usually peaking in the closed loop response and some ringing in the step response for fast input edges, depending upon the application. This is because a minimum phase margin is maintained for the G=+1 configuration. For optimum settling time and minimum ringing, a feedback resistor of 200 Ω should be used as shown in Figure 68. Additional capacitance can also be used in parallel with the feedback resistance if even finer optimization is required.

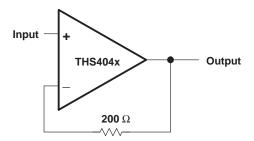


Figure 68. Noninverting, Unity Gain Schematic

SGLS229B - FEBRUARY 2004 - REVISED JUNE 2008

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high frequency performance of the THS404x, follow proper printed-circuit board high frequency design techniques. A general set of guidelines is given below. In addition, a THS404x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets are not recommended for high-speed operational amplifiers. The additional lead
 inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly
 to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements Optimum high frequency performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components Using surface-mount passive components is recommended for high
 frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

APPLICATION INFORMATION

evaluation board

An evaluation board is available for the THS4041 (literature number SLOP219). This board has been configured for very low parasitic capacitance in order to realize the full performance of the amplifier. A schematic of the evaluation board is shown in Figure 69. The circuitry has been designed so that the amplifier may be used in either an inverting or noninverting configuration. For more information, see the *THS4041 EVM User's Guide*. To order the evaluation board, contact your local Texas Instruments sales office or distributor.

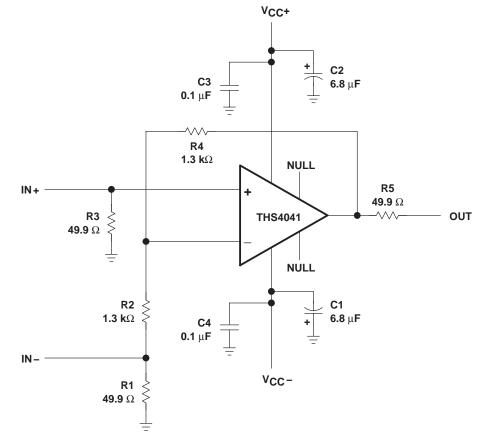


Figure 69. THS4041 Evaluation Board

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
THS4041IDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS4041IDRQ1	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

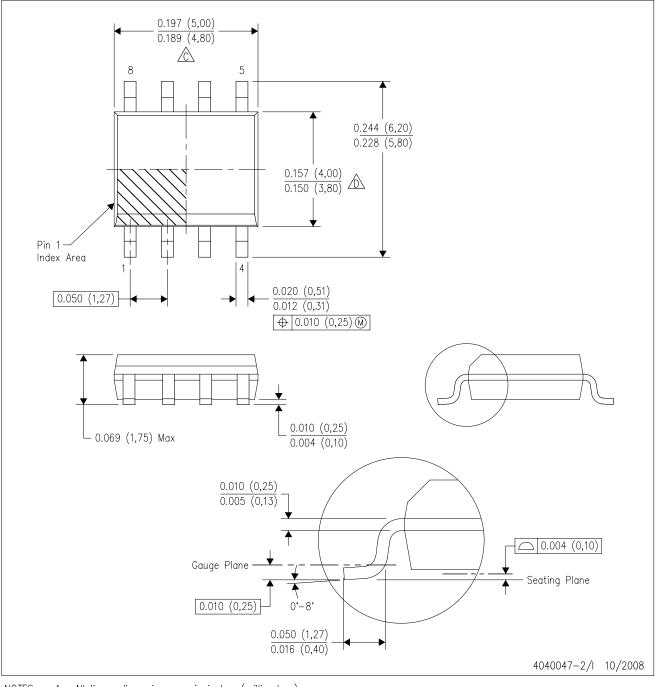
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF THS4041-Q1 : • Catalog: THS4041


NOTE: Qualified Version Definitions:

Catalog Ti's standard astalog prod

Catalog - TI's standard catalog product

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated